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Abstract

Parallel and distributed computing has attracted a lot of attention from researchers
over the past few years. It is a promising new approach for solving large problems
that were hitherto considered very difficult to solve using traditional serial computers.
The advancement of technology and the introduction of fiber-optic networks for high
speed data transmission has made distributed computing on a network of computers
very attractive. In this paper we address the problem of solving linear programs us-
ing distributed computing. We present a 2-phase parallel standard simplex algorithm
for solving linear programs with single upper bounded variables. The parallel simplex
algorithm was implemented on NECTAR (NEtwork CompuTer ARchitecture) a collec-
tion of SUN4/330 workstations on a fiber-optic network and evaluated using randomly

generated problems and those available from the netlib database.




Parallel and distributed computing has attracted a lot of attention over the past sev-
eral years. It offers a new, promising approach to solving large problem that were, till
now, considered difficult to solve using conventional serial computers. The advancement
of communications network technology and the introduction of high speed fiber-optic data
transmission networks has made distributed com'puting over a network of computers very
attractive. Parallel/distributed computing may potentially be utilized to more efficiently
solve difficult linear programming problems. Linear programming is frequently used as a
subroutine for solx;ing more difficult optim_ization problems like integer programs. Since lin-
ear programs are widely solved by matrix manipulation, and since matrix algorithms are
excellent candidates for parallelizing, it seems natural to parallelize the simplex method.

However, the efficacy of the parallelized simplex method may depend on the density of the
constraint matrix. In practice, most of the linear programs solved have a sparse constraint
matrix so that the revised simplex method [4] runs substantially faster than the standard
simplex method. We believe that parallelizing the revised simplex method for distributed
computing involving high communication overheads may not be very successful. When the
constraint matrix is dense it is very likely that the standard simplex method runs faster than
the revised simplex method. This might be the case after the addition of a large number
of strong cuts when linear programming is used as a subroutine in a branch-and-cut [14]
framework to solve integer programming problems or after addition of valid inequalities to
tighten the initial linear programming relaxation of the problem. In dense problems, lack
of enough memory can cause the revised simplex method to do memory paging to disk
resulting in considerable degradation in performance. These factors point to the usefulness
of parallelizing the standard simplex method to solve dense problems. Distributed computing
also offers an opportunity to make better use of the available computing resources that are
idle during certain periods in the day.

Despite the enormity of literature on parallel algorithms for various problems (see [3]

for a partial list), very little work has been done on parallelizing the simplex method for




linear programs. Most of the work on parallelizing the simplex method has concentrated
on solving problems with special structure like network flow problems [1], staircase linear
programs [15, 5, 6, 9], two stage stochastic linear programs [6] or transportation problems
[12].

In general, an approach to solving large problems in parallel consists of breaking the
problem into a number of small tasks each of which can be manipulated by its own processor.
These tasks are coordinated using a control mechanism. The most commonly used parallel
structure is the rﬁaster—s]ave structure. Here many slave tasks work synchronously under
the control of the master task that has close control over the computations performed by
slave tasks. Since one of the objectives of parallel processing is to solve large problems in a
shorter period of time (“real”) the performance of such systems is measured by the speedup,
Sp, defined as the ratio of the solution time using the serial algorithm to the time using a
parallel algorithm on p processors.

In this paper we present a 2-phase parallel standard simplex algorithm for solving linear
programs with SUB variables. The algorithm is described in section 1. In section 2, we
present details of the NECTAR architecture on which the algorithm was implemented. In
section 3, we present some computational experience on the implementation of the parallel
simplex algorithm on NECTAR using Nectarine [16] on randomly generated problems. We
also present results on the performance of parallel simplex on a few problems from the netlib

database [8, 10].

1 Parallel Simplex Algorithm

During the last two decades, researchers have been quite successful in converting some of
the familiar serial algorithms to efficient parallel algorithms. Since solving linear programs
using the simplex method is essentially a matrix algorithm, the parallel algorithms profit by

taking advantage of the parallelism inherent in matrix manipulation.




Consider a linear program (P), stated as follows:

max cx
subject to
AWz < pO (P)
Az = p@
0<z< u

where b(!) and b are not necessarily non-negative, A% is an m; x n matrix, 4® is an
(m — m;) X n matrix and all other matrices are of appropriate dimension.

Since the right hand side vectors are not restricted to be non-negative such linear pro-
grams are solved using a two phase simplex method. The purpose of phase 1 in a two phase
simplex method is to find a basic feasible solution to the problem. Most commercial im-
plementations of the two phase simplex method use the objective of minimizing the sum of
infeasibilities during phase 1 [7, 11, 13]. This objective function is defined in terms of the
variables that violate either the upper bound or the lower bound.

Our parallelization technique consists of partitioning the tableau row-wise (horizontal
parallelism) into p independent subtableaus, where p denotes the number of processors work-
ing simultaneously on the problem. Let I; denote the indices of the rows in processor k.
Each subtableau is treated like an individual tableau on a serial processor and the operations
involved in the simplex method are applied to it. Since we have two different objective func-
tions for phase 1 and phase 2, the number of rows in the compact representation of tableau
is m + 2 and the number of columns is n + 1. Henceforth we use a;; to denote any element
in the tableau with a,y denoting the right hand side vector b. The (m + 2) rowé are divided

as equally as possible between the p processors. The master processor contains both the




objective function rows. We will call the other P — 1 processors, slave processors.

The Simplex method [4] searches for an optimal solution by going from one basic solution
to another making sure that the new solution has an objective function value that is no
worse than the current solution. The procedure terminates when the objective function row
indicates that there are no other solutions that are better than the current solution. Going

from one basic solution to another involves the following steps

1. Identifying a variable that can enter the basis
2. Identifying a variable that can leave the basis

3. Performing a pivot and updating the tableau for the new basic solution.

1.1 Choosing the entering variable and pivot column

During the process of choosing the entering variable or the pivot column J, only the master
processor is at work because the objective function rows are stored only in the master
processor. Choosing the pivot column involves finding the smallest element (most negative
element) in the appropriate objective function row determined by the current phase of the
simplex method.

In phase 1 of the simplex method we use an objective of minimizing the sum of infeasi-
bilities. The objective function row is calculated as follows. Let

B = {8, B2,...,Bm} denote the indices of the variables in the current basis and N denote
the indices of the non-basic variables.

Let us define

By = {i|8; € B and z, violates its upper bound}

B, = {i|8; € B and x4, violates its lower bound}

Then the sum of infeasibilities can be written as

E‘iEBl (zﬂ.- —ug,) - EiEBz Zp;




= Yien, (a0 — Tjen aijT; — Up;) — iep, (Gio — Ljen i T;)

In other words, the phase 1 objective function can be calculated by adding the rows of
the tableau belonging to B; and subtracting the rows of the tableau belonging to B,. In
the parallel implementation, each slave processor performs this operation independently on
its rows and sends a message containing its contribution to the objective function to the
méster processor. The master processor sums the objective function row from each one of
the slave processors along with its own to determine the phase 1 ob jective function row for
that iteration.

Repeating this for a number of iterations, we will either find a feasible basis or conclude
that the linear program is infeasible because there is no entering variable that reduces the
sum of infeasibilities. If we find a feasible basis we restore the original objective function
and begin phase 2 of the simplex method.

The master processor identifies the pivot column by finding the most negative element
in the appropriate objective function row and communicates it to all the slave processors.
Upon receipt of the pivot column information all processors work in parallel to find the pivot

row.

1.2 Choosing the leaving variable and pivot row

We identify the leaving variable in phase 1 using the following two-pass procedure [13].

Let B = {f1, Bz, - - -, B} denote the indices of the variables in the current basis, J denote
the index of the entering column and ; denote the index of the entering variable. For each
basic variable one can determine a set of upto two threshold levels. These threshold levels
determine when the basic variable reaches one of its bounds as we increase the value of the
non-basic variable. They can be calculated as follows:

xg,—

If zg, > up; and a;; > 0 the two thresholds are ¢, = 2~ and ¢, = 2%

a QiJ
else if 25, < 0 and a;; < 0 the two thresholds are ¢; = % and t, = ﬁia——_lléi

else if 0 < z5, < ug, and a;; < 0 the threshold is ¢ = 825 :uﬁ '

iJ
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else if 0 < Zg, < ug, and a;; > 0 the threshold is t = z—éj

]

The two pass procedure to determine the leaving variable is as follows:

e Pass 1: For each basic variable Zg;,t =1,...,m determine a set of upto two threshold
levels from the associated bounds and define the corresponding triples of the form
[t, 1, o] where t determines the threshold level as determined above, 7 denotes the row

index of the basic variable z5, and o = |a;y|.

e Pass 2: Sort the entire list of triples in increasing values of . Let us denote the elements
of this sorted list by [tk, i, 04),k = 1,..., K. Let o} denote the reduced cost of the

variable corresponding to the entering column J. Calculate the partial sums,
Sy =0} + Zle o; for k=0,..., K where 2?=1 a; = 0.

Find the index k such that Si-1 <0and S; > 0. The row corresponding to the leaving

variable is 1.

In the parallel implementation every processor executes Pass 1 of the above procedure
independently on its set of rows. Each slave processor then sends a message containing all
the triples obtained from its rows to the master processor. The master processor collects all
the triples and performs Pass 2 of the above procedure to identify the row corresponding to
the leaving variable i.e., the pivot row. The master processor then sends a message to each
slave processor identifying the processor containing the pivot row and the index of the pivot
row.

In phase 2 of the simplex method the leaving variable is identified using the standard
minimum ratio rule. Since we have a feasible basis and want to maintain a feasible basis
in every iteration of phase 2 we calculate upto one threshold level for each basic variable as
described below.

If a;y > 0 the threshold is ¢ = :_ff resulting in a regular pivot.

else if a;; < 0 the threshold is t = ﬁf%ﬂ resulting in a basic complementation pivot.




The threshold level from to the entering variable, z,,, is u,, resulting in a non-basic
complementation pivot.

In the parallel implementation each processor calculates the minimum such threshold level
for its rows. Each slave processor then sends a message containing the minimum threshold
level, the index of the corresponding row (pivot row) and the kind of pivot (regular, ba-
sic complementation, non-basic complementation) corresponding to the minimum threshold
level to the master processor. The master processor sorts the threshold levels from all the
processors to idenfify the minimum ratio and sends a message to each slave processor con-
taining information about the processor owning the pivot row, the pivot kind and the index

of the pivot row.

1.3 Performing the pivot

The bulk of the computation in the simplex method is done during the process of lpivoting and
updating the tableau. Updating the tableau exhibits a large amount of inherent parallelism
and the parallel simplex method exploits it. Since we are using the simplex method for SUB

variables there are three possible kinds of pivots.

1. Regular pivot
2. Basic complementation pivot

3. Nonbasic complementation pivot

Based on the message sent by the master processor in the previous step, all the processors
have information about the processor owning the pivot row, the corresponding pivot kind
and the index of the pivot row. Let p denote the processor that owns the pivot row indexed
by h. During the course of a regular pivot the following steps are carried out. Processor p
updates the pivot row and communicates the row to all the other processors. Upon receipt

of the row all p processors simultaneously update the tableau as follows.




1

0 =0ij— Loy, i€y, i#h, j£Jandk=1,...,p.

’

aiJ=—£“-, ieIk, z#h, andk=l,...,p.

arJ
1

% = T3
During the course of a nonbasic complementation pivot the tableau is updated by all the
processors in parallel as follows.

!

a;; = —a;y, t € I, andk=1,...,p.

’

Qip = Uz,Qiy — Qip, 1 € Iy, and k =1,...,p.

During the course of a basic complementation pivot the tableau is updated only by

processor p as follows.

a;lj =—apj, J=1,...,n.
Qo = Uy, — Qpo.
It should however be noted that the iteration immediately following a basic comple-
mentation pivot on a row indexed h will always result in a regular pivot on the same row
h.

The flow charts in figures 2 and 3 summarize the activities performed by the master

processor and the slave processors, respectively.

2 About Nectar

In this section we present some details about the Nectar system. NEtwork CompuTer AR-
chitecture (Nectar) [16] is a collection of SUN 4/330 workstations on a fiber optic network.
Is is a aysnchronous message-passing model where activities are coordinated on the basis of
received messages. It consists of a crossbar based network and Communication Accelerator
Boards (CABs) that connect nodes (workstations) to the network (Figure 1). The CABs are

built around a general-purpose processor (the SPARC) and have memory to store messages.
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The main function of CAB is to execute communication protocols. Communication in Nec-
tar is based on variable-length, untyped messages that are sent to or received from buffers

in CAB memory.

[caB] [caB]

| Host | | CAB[S——5] HUB HUB [=—ZCAB| | Host |

NECTAR

Fiber Optic Links

| Host | [CAB[=—] HUB

CAB| | Host |

Figure 1: Nectar System (from [16])

Nectarine (Nectar Interface) is a low-level programming interface that gives applications
full access to the Nectar hardware and low-level software. A task is an invocation of an
executable piece of code that has the Nectarine library linked in. An application consists of
a number of tasks executing on the nodes and CABs. Tasks communicate with each other

by placing messages in and retreiving messages from buffers located in the CAB memory.
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3 Computational Results

In this section, we discuss computational experience with an implementation of the parallel
simplex algorithm in the C programming language using Nectarine to access the Nectar
hardware and low-level software.

Since an over-riding reason for using a multiprocessor system is to decrease the time
needed to solve problems, concern with the performance of such systems in solving those
problems is quite natural. The most commonly used guage of a parallel algorithm’s perfor-
mance is speed-up. We use the following definitions in reporting our computational results.
Let 7, be the computation time to solve the problem if P 2 1 processors are used. The
speed-up S, of a parallel algorithm is defined by Sp = % The corresponding efficiency E,
of the computation is given by E, = %. One would hope to achieve an efficiency of 1, but
this is usually impossible.

The computational experiment was designed to study the effect of problem size, problem
shape and problems density on speed-up. All the experiments were performed on a lightly
loaded system using randomly generated problems. The problems were generated as follows.
The cost coefficients were chosen from U[10,20], the nonzero constraint matrix coefficients
were chosen from U[10,20] and the nonzero right hand side of the constraints were chosen
from U[25,80]. The nonzero constraint coefficients were chosen such that there was an equal
distribution of positive and negative elements. All variables had a upperbound of 10. Figure
4 shows the effect of problem size on speed-up. As can be seen from the figure the speed-up
obtained increases with problem size. However, the increase in speed-up obtained seems to
tail-off as problem size increases. It should also be noted that as the number of processors
increases the difference between the speed-up obtained and the ideal speed-up increases.
This can be explained by the fact that as we increase the number of processors more time is
spent waiting to synchronize computation thereby increasing communication overhead and

decreasing efficiency. Figure 5 shows the effect of density on speed-up. The amount of
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speed-up obtained seems to be consistent over all densities. This is probably because the
tableau fills up quite fast during the pivoting process and hence the amount of work done is
more or less identical irrespective of problem density. Figure 6 shows the effect of problem
shape on speed-up. Keeping the number of elements in the tableau constant, the amount of
speed-up obtained increases as the number of columns in the problem decreases. This can be
explained by the fact that amount of time required to communicate the pivot row decreases
as the number of columns in the problem decreases.

Recent literature on reporting computational results on parallel corﬁputing has suggested
that reporting speedups should be done using the fastest available serial code [2]. Figures
7,8 and 9 compare the performance of parallel simplex with CPLEX 2.1. Since there is
no easy way to make sure that the number of iterations required to solve a problem using
parallel simplex and CPLEX 2.1 are identical, the results reported are based on time taken
per iteration. Figure 7 shows the effect of problem size on speed-up with respect to CPLEX
2.1. The speed-up obtained decreases as problem size increases. This is because the number
of iterations taken to solve the problem using parallel simplex increases proportional to the
problem size, whereas with CPLEX 2.1 the increase is less than proportional to the problem
size. Figure 8 shows the effect of problem density on speed-up. For the same problem size,
the speed-up obtained with respect to CPLEX 2.1 increases with problem density. This
is because the computational efficiency of the revised simplex method used by CPLEX 2.1
- decreases with increasing problem density. Figure 9 shows the effect of problem shape on
speed-up with respect to CPLEX 2.1. For the same number of elements in the tableau, the
speed-up obtained increases as the number of columns decreases. As explained before, this
is due to a decrease in the communication time with a decrease in the number of columns.

Next, we report some computational results obtained by using the parallel simplex
method to solve three problems from the netlib database. Table 1 gives some details about
the three problems and Table 2 gives the speed-up obtained with respect to serial simplex

for different numbers of processors. These results illustrate the effect of the number phase
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Problem Size Density
grow22 | 440x946 | 1.98%
scfxm2 | 660x914 | 0.86%
fif80000 | 524x854 | 1.39%

Table 1: Problem details

1 iterations on speedup. As can be seen from the table, for the same number of processors,
the speedup of our parallel versus our serial code decreases across the three problems. This
can be attributed to the fact that the number of phase 1 iterations increase across the three
problems. As mentioned in section 1.2, since the slave processors communicate a lot of data
to the master processor in each iteration of phase 1 the communication time and overhead
increases resulting in a decrease in efficiency and speed-up. Unfortunately we were not able
to obtain any speed-up with respect to CPLEX 2.1 because the problem density was very

low.

Number of Speedups
Processors || grow22 | scfxm?2 [ #130000
2 1.8 1.8 1.8
3 2.7 2.6 2.5
4 3.5 3.4 3.1
) 4.2 4.1 3.7

Table 2: Performance of Parallel simplex on 3 problems from the netlib database

4 Conclusions

In this paper we have developed a 2-phase parallel simplex algorithm and studied an imple-
mentation of the parallel algorith_m on NECTAR. Computational results on an implemen-

tation of the parallel simplex method using Nectar indicates that consistent speed-ups can
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be obtained with respect to the serial version when the number of phase 1 iterations is not
much greater than the number of phase 2 iterations. In comparing parallel simplex with
CPLEX 2.1 we were able to obtain a speed-up of about 2 on reasonably dense problems (>
30%) that have a lot more rows than columns. Due to the sparsity of the problems in the

netlib database performance of parallel simplex with respect to CPLEX 2.1 was rather poor.
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